Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery

نویسندگان

چکیده

Cross-modality fusing complementary information of multispectral remote sensing image pairs can improve the perception ability detection algorithms, making them more robust and reliable for a wider range applications, such as nighttime detection. Compared with prior methods, we think different features should be processed specifically, modality-specific retained enhanced, while modality-shared cherry-picked from RGB thermal IR modalities. Following this idea, novel lightweight feature fusion approach joint common-modality differential-modality attentions are proposed, named Cross-Modality Attentive Feature Fusion (CMAFF). Given intermediate maps images, our module parallel infers attention two separate modalities, common- differential-modality, then multiplied to input map respectively adaptive enhancement or selection. Extensive experiments demonstrate that proposed achieve state-of-the-art performance at low computation cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Fusion of Multispectral Imagery and Spectrometer Data in UAV Remote Sensing

High spatial resolution hyperspectral data often used in precision farming applications are not available from current satellite sensors, and difficult or expensive to acquire from standard aircraft. Alternatively, in precision farming, unmanned aerial vehicles (UAVs) are emerging as lower cost and more flexible means to acquire very high resolution imagery. Miniaturized hyperspectral sensors h...

متن کامل

Two Effective Feature Selection Criteria for Multispectral Remote Sensing

In an earlier study, Swain et al. reported on two statistical separability measures which for multiclass feature selection were shown experimentally to be more reliable than divergence. However, the empirical results of that study together with the best theoretical results in the literature left open some practical questions regarding the quantitative characterization of these separability meas...

متن کامل

Semantic Feature Selection for Object Discovery in High-Resolution Remote Sensing Imagery

Given its importance, the problem of object discovery in High-Resolution Remote-Sensing (HRRS) imagery has been given a lot of attention by image retrieval researchers. Despite the vast amount of expert endeavor spent on this problem, more effort has been expected to discover and utilize hidden semantics of images for image retrieval. To this end, in this paper, we exploit a hyperclique pattern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2022

ISSN: ['1873-5142', '0031-3203']

DOI: https://doi.org/10.1016/j.patcog.2022.108786